

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 1885-1888

Tetrahedron Letters

New routes for the synthesis of 3- and 5-substituted 2(1*H*)-pyrazinones

Rasha Azzam,[†] Wim De Borggraeve, Frans Compernolle^{*} and Georges J. Hoornaert

Laboratorium voor Organische Synthese, K.U. Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

Received 28 November 2003; revised 23 December 2003; accepted 5 January 2004

Abstract—Various 3-(hetero)aryl, 3-alkyl and 3-alkenyl-2(1H)-pyrazinones were prepared by applying the Suzuki and Heck reaction methodology to 3,5-dichloro-2(1H)-pyrazinones. Furthermore, following hydrogenolysis of the 5-chloro substituent and regio-selective 5-bromination, this palladium-catalysed cross-coupling approach could be extended to the synthesis of the analogous 5-substituted 2(1H)-pyrazinones.

© 2004 Elsevier Ltd. All rights reserved.

The 2(1H)-pyrazinone ring system can be utilised as a scaffold to introduce an assembly of pharmacophoric groups designed to fit the active site of a receptor or enzyme. Specifically, this scaffolding strategy has been applied for the construction of inhibitors of HIV reverse transcriptase.¹ Pyrazinones 1a and 1b are well-recognised ligands that bind to a new site on the $GABA_A/$ chloride ionophore complex.² Pyrazinones 2 bearing various ortho-substituted phenylsulfonylurea groups at the C-3 position display selective herbicidal and growthregulating properties.³ On the other hand, 2(1H)-pyrazinones such as 3 that are substituted with alkyl amino groups at the C-3 position are useful inhibitors of thrombin and associated thrombotic occlusions.4,5 Other 2(1H)-pyrazinones bearing substituted alkyl groups at N-1 and alkyl and phenyl groups at C-3 show an inhibitory action on platelet aggregation, vasodilating activity and/or inhibitory action on lipoperoxide generation.⁶ Finally, polysubstituted pyrazinone derivatives such as 4 and 5 have been found useful in the treatment of various CRF (corticotrophin releasing factor)-related disorders,7 and a variety of neurodegenerative and stress-related disorders.8

Therefore, major interest centres around developing new routes for the introduction of more challenging substituents, for example, alkenyl and heteroaryl groups, at the reactive C-3 position and especially at the less accessible C-5 position of 2(1H)-pyrazinones. In this respect, Suzuki and Heck cross-coupling using organoboron reagents or vinyl compounds could offer an interesting route for introduction of a variety of (hetero)aryl and vinyl groups.

Keywords: 3- and 5-Substituted 2(1*H*)-pyrazinones; Heterocyclic compounds; Suzuki reaction; Heck reaction.

^{*} Corresponding author. Tel.: +32-16-32-74-07; fax: +32-16-32-79-90; e-mail: frans.compernolle@chem.kuleuven.ac.be

[†] Present address: Department of Chemistry, Helwan University, Ain-Helwan, Cairo, Egypt, 11795.

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.01.017

Table 1. Suzuki-coupling of (hetero)arylboronic acid at C-3 of 2(1*H*)pyrazinones **6a,b** to form 3-(hetero)aryl-5-chloro-2(1*H*)-pyrazinones **7a-c**

		CI R ³ -B(O) Pd(PPh ₃) ₄ toluene or	H)₂ , aq. Na₂CO₃ DME, reflux		R ³
	6a,b	D3	D 6	7a-	C
7.0			K° CH	Solvent	Y teld (%)
7a 7b	rn Bn	CHO	Ph	Toluene	65
7c	Bn	X s	Ph	Toluene	70

We studied the cross-coupling reaction of (hetero)arylboronic acids with 3,5-dichloro-2(1H)-pyrazinones with the intention of introducing groups different from those obtained previously by using organotin reagents.⁹ As seen before for the Stille reaction, the initial oxidative addition occurs preferentially at the more reactive C-3 position (Table 1). We chose coupling conditions that were optimised previously for the Suzuki coupling of π deficient heteroaryl chlorides.^{10,11} The best results were obtained using tetrakis(triphenylphosphine)palladium(0) as a catalyst, aqueous Na₂CO₃ as base and toluene as solvent. Thus reaction of pyrazinones $6a^{12}$ and **6b**¹³ with 1.2 equiv of (hetero)arylboronic acids and 3 mol% of Pd(PPh₃)₄ in toluene under reflux overnight produced 3-aryl-2(1H)-pyrazinones 7a,b and the corresponding 3-thienyl product 7c in good yields. After completion of the reaction and usual workup, the mixture was subjected to column chromatography to remove Ph₃PO.

We also investigated the cross-coupling reaction of 3,5dichloro-2(1*H*)-pyrazinone **6b** and some alkyl-9-BBN derivatives (Table 2).^{14–16} The latter were prepared in

Table 2. Pd-catalysed cross-coupling of alkyl-9-BBN derivatives at the C-3 position of 2(1H)-pyrazinone **6b** to form 3-alkyl-5-chloro-2(1H)-pyrazinones **8a,b**

situ by adding 9-BBN in THF to a THF solution of some representative alkenes under an argon atmosphere. The mixture was stirred for 6h at room temperature, and 2(1H)-pyrazinone, Pd(dppf)Cl₂ and aq NaOH were added. After reaction at room temperature overnight, complete conversion into 3-substituted products **8a,b** was observed.

From the results displayed, it appears that primary alkyl-9-BBN reagents having either a single (phenyl) or double (cyclohexyl branching) substitution at the β -position of the alkyl group attached to boron, all react well with 3,5-dichloro-2(1*H*)-pyrazinone **6b** to give the corresponding products **8a,b** in good yields. However, no coupling was observed for the reaction of **6b** with the secondary cyclopentyl-9-BBN reagent prepared from cyclopentene.

Applying the Heck reaction to 3,5-dichloro-2(1*H*)-pyrazinones provides a direct method for preparing the corresponding 3-alkenyl derivatives. Thus reaction of **6b** with various alkenes afforded 3-alkenyl products **9a–d** in good yield (Table 3). The best conditions consisted of using $3 \mod \%$ of Pd(OAc)₂, $7 \mod \%$ of tri-*o*-tolylphosphine and 2 equiv of triethylamine in DMF at 100 °C. Less satisfactory results or no conversion at all were observed when replacing DMF with acetonitrile.

To avoid evaporation and/or oxidation of volatile vinylic starting materials, the reaction was carried out under argon in a capped heavy-walled glass tube heated in an oil bath. Both styrene and methyl acrylate reacted in the expected way to produce **9a** and **9b** in 80% and 75% yields, respectively. A lower yield was observed for the reaction of **6b** with cyclohexene. The reaction of **6b** with ethyl vinyl ether afforded an unstable enol ether product **9c**, which was isolated in 87% yield by flash column chromatography. The (*E*)-configuration of the double bond was established by the magnitude of the coupling constant between the two vinylic protons in **9a,b** (16 Hz) and in the enol ether product **9c** (12 Hz).

In contrast to the easy addition–elimination reaction of the 3-imidoyl chloride function, analogous substitution at the C-5-chloro position of 3,5-dichloro-2(1H)-pyrazinones appears difficult. Substitution of this group has

Table 3. Heck reaction at the C-3 position of 2(1*H*)-pyrazinone **6b** to form 3-vinyl-5-chloro-2(1*H*)-pyrazinones **9a–d**

Ph、 Cl [~]	Bn N O N Cl	Pd(OAc) ₂ , P(o-tolyl) ₃ , Et ₃ N, DMF, 100 °C	Ph Cl Sa-d	
	R	\mathbf{R}^1	AcCN yield (%)	DMF yield (%)
9a	Н	Ph	60	80
9b	Н	CO_2CH_3	50	75
9c	Н	OC_2H_5		87
9d	–CH	$_{2}(CH_{2})_{2}CH_{2}-$		50

Scheme 1. Synthesis of 5-alkyl and 5-aryl-2(1H)-pyrazinones.

been achieved only in an indirect way via isomerisation of 6-alkyl- or 6-benzyl-5-chloro-3-methoxy-2(1H)-pyrazinones to form the tautomeric 6-alkylidene/benzylidene-5-chloro-3,6-dihydropyrazin-2(1H)-ones having a reactive 5-imidoyl chloride group: subsequent reaction with organotin reagents or amines then produced the corresponding 5-alkyl/aryl or 5-amino-6-alkylidene/benzylidene-3,6-dihydropyrazin-2(1H)-ones, respectively.¹⁷

2(1H)-Pyrazinones bearing a 5-alkyl substituent (and their 5-H analogues) can also be obtained directly by base-catalysed condensation of 1,2-dicarbonyl compounds with various α -amino N-substituted carbox-amide derivatives (Scheme 1).¹⁸ However, this reaction is useful only for equal substituents R⁵ and R⁶, since a mixture of regioisomeric pyrazinones is produced when R⁵ and R⁶ are different.

The easy access to 3-substituted 5-chloropyrazinones prompted us to apply the Suzuki-coupling methodology firstly to these compounds. However, using Pd(PPh₃)₄ catalyst and aq Na₂CO₃ in either toluene or DME at reflux failed to produce the corresponding 5-aryl-2(1*H*)pyrazinones. Other conditions involving the use of Pd₂(dba)₃, combined with P(*t*-Bu)₃ and CsF or KF in THF or dioxane, that is, the conditions used for the synthesis of biaryl compounds starting from an aryl chloride,¹⁹ were also unsuccessful. Therefore we turned our attention to the corresponding 5-bromo-2(1*H*)pyrazinones to introduce the desired 5-aryl/alkyl substituents.

To our knowledge, the synthesis of 3-substituted 5bromo-2(1H)-pyrazinones possessing various substituents at the N-1 position has not yet been reported. However, 3,6-disubstituted 5-halo-2-pyrazinols have been prepared by halogenation at the C-5 position of the corresponding 2-pyrazinols.²⁰ Accordingly, we examined the analogous C-5 bromination of 1-Bn and 1-Ph substituted pyrazinones 11a-c. Following hydrogenolysis of 10a-c, effected by using a 10% Pd/C catalyst in methanol,²¹ the resulting 5-dechlorinated compounds 11a-c were subjected to treatment with N-bromosuccinimide in DMF (Table 4). Bromination with NBS proceeded at room temperature in the dark and was complete within 1 h. Bromine was introduced selectively at the C-5 position, even when $R^6 = H$. Presumably electrophilic attack at C-5 is facilitated by delocalisation of the lone pair on N-1.

The position of the 5-Br substituent was verified by ¹Hcoupled ¹³C NMR analysis of **12a**. In this ¹H-coupled spectrum, the methylene C-atom of the *N*-benzyl group appears as a triplet of quartets (tq) with ¹J = 284.8 Hz and ³J = 3.2 Hz: these are due to coupling with two

Table 4. 5-Bromination of 2(1H)-pyrazinones

R ⁶ N O I CI N OMe 10a-c	H ₂ ,Pd/C MeOH H N 11a	OMe	NBS	Br N OMe 12a-c
Starting compound	Product 12	\mathbb{R}^1	\mathbb{R}^6	Yield (%)
11a	12a	Bn	Н	75
11b	12b	Ph	CH_3	73
11c	12c	Bn	Ph	82

attached protons (¹*J*) and to coupling with two *ortho*protons of the phenyl ring plus the 6-H atom on the 2(1*H*)-pyrazinone ring (³*J*). For the carbonyl carbon atom (C-2) a doublet of triplets (dt) coupling pattern was observed with ³*J* = 5 and 3 Hz, which can be related to the coupling of C-2 with H-6 and the methylene protons of the *N*-benzyl group. The carbon atom C-5 attached to the Br-atom appears as a doublet (d, ²*J* = 2.5 Hz) at δ 78.7 ppm, due to coupling with H-6. Carbon C-6 in turn is detected as a doublet of triplets (dt) with ¹*J* = 189 Hz and ³*J* = 4.6 Hz, due to coupling with H-6 and the methylene protons of the *N*-benzyl group.

In a preliminary study concerning the application of the 5-bromo-2(1*H*)-pyrazinones in palladium-catalysed coupling reactions, we examined the cross-coupling of **12b** with some representative boronic acids and alkenes. Suzuki coupling (Table 5) of **12b** with phenylboronic acid and 3-thienylboronic acid was carried out using aq Na₂CO₃ and Pd(PPh₃)₄ and went to completion after heating in toluene or DME at reflux for 18 h. The yields of these coupling procedures were 94% and 55%. Similar cross-coupling of **12b** with (*E*)-2-phenylethenyl-boronic acid in DME afforded compound **13c** in 95% yield.

The Heck reaction of 5-bromo-2(1H)-pyrazinone **12c** with styrene, methyl acrylate and cyclohexene was carried out in a similar manner to that described above for 3-chloro-2(1H)-pyrazinones. Thus treatment of **12c** with

Table 5. Suzuki cross-coupling reaction of (hetero)aryl- and1-alkenylboronic acid with 5-bromo-2(1*H*)-pyrazinone**12b**

Ph MeNO R⁵-B	−B(OH) ₂ , Pd(PPh ₃) ₄ , aq. Na ₂ CO ₃ Me N O		
Br N OMe	toluene or DME, reflux	► R ⁵ N OMe	
12b		13а-с	
Product	R ⁵	Yield (%)	
13a	Ph	94	
13b		55	
13c	Ph	95	

Table 6. Heck-coupling of 5-bromopyrazinone 12c with alkenes

Bn Ph Br N 12c	<pre></pre>	Pd(OAc) ₂ P(o-tolyl) ₃ , Et ₃ N DMF, 100 °C	R'Ph N OMe N OMe
	R	R ′	Yield (%)
14a	Н	Ph	71
14b	Н	CO_2CH_3	66
14c	-CH	$I_2(CH_2)_3CH_2-$	60

3 mol % of Pd(OAc)₂, 7 mol % of tri-*o*-tolylphosphine and 2 equiv of triethylamine in DMF at 100 °C was found to be the most effective for conversion into the corresponding 5-substituted alkenyl-2(1*H*)-pyrazinones **14a–c** (Table 6).

Obviously, 5-boronic acid or 5-boronate ester derivatives of 3-substituted 2(1H)-pyrazinones would be very useful as a common intermediate in reverse cross-coupling reactions with various hetero(aryl) and alkenyl halides. Therefore cross-coupling of 5-bromo-2(1H)pyrazinones **12b** and tetra(alkoxo)diborons was attempted using conditions that were previously optimised for preparing pinacol arylboronates, that is, 1.1 equiv of bis(pinacolato)diboron, 3 mol% of Pd(dba)₂, 3.3 mol% of P(*t*-Bu)₃ and 3 equiv of KOAc in dioxane at 80 °C.²² However, this procedure failed when applied to 5-bromo-2(1H)-pyrazinone **12b**, and only starting material was recovered from the reaction mixture.

Conclusion

Palladium-catalysed Suzuki and Heck reactions of 3chloro- and 5-bromo-2(1H)-pyrazinones were used successfully to introduce (hetero)aryl, alkenyl and alkyl groups at both C-3 and C-5. The required 5-bromopyrazinone precursors were prepared via dechlorination followed by electrophilic substitution at C-5. In future work, this approach will be extended to include palladium-catalysed cross-coupling reactions of other pyrazinones, for example, 5-iodo-2(1H)-pyrazinones, and more extensive boronate or alkene reaction partners.

Acknowledgements

The authors wish to thank the FWO (Fund for Scientific Research, Flanders, Belgium) and the Johnson &

Johnson Pharmaceutical Research Foundation for financial support. They are indebted to R. De Boer and Prof. S. Toppet for mass and NMR measurements.

References and notes

- 1. Jones, J. UK Patent GB 2266716, 1993; Chem. Abstr. 1993, 120, 217735.
- Im, K.; Im, B.; Judge, M.; Gammill, B.; Hamilton, J.; Carter, B. Mol. Pharm. 1993, 44, 468.
- 3. Boehner, B.; Meyer, W. US 4,940,482, 1990; Chem. Abstr. 1991, 114, 42813.
- Sanderson, P.; Lyle, T.; Dorsey, B.; Varsolona, R. Patent Application PCT/US97/06744; WO 97/40024, 1997; *Chem. Abstr.* 1997, 127, 248015.
- Parlow, J. J.; Case, B. L.; Dice, T. A.; Fenton, R. L.; Hayes, M. J.; Jones, D. E.; Neumann, W. L.; Wood, R. S.; Lachance, R. M.; Girard, T. J.; Nicholson, N. S.; Clare, M.; Stegeman, R. A.; Stevens, A. M.; Stallings, W. C.; Kurumbail, R. G.; South, M. S. J. Med. Chem. 2003, 46, 4050.
- Yaso, M.; Suzuki, Y.; Shibata, K.; Hayashi, E. Jpn. Kokai Tokkyo Koho JP 62,198,671, 1987; *Chem. Abstr.* 1988, 108, 167500.
- Arvanitis, A.; Gilligan, P.; Hartz, R. Patent Application PCT/US02/15493; WO 02/092090, 2002; *Chem. Abstr.* 2002, 137, 370110.
- Arvanitis, A.; Olson, R.E.; Arnold, C.; Frietze, W. Patent Application PCT/US97/16252; WO 98/11075, 1998; *Chem. Abstr.* 1998, 128, 2440463.
- Roegiers, J.; De Borggraeve, W. M.; Toppet, S. M.; Compernolle, F.; Hoornaert, G. J. *Tetrahedron* 2003, 59, 5047.
- 10. Achab, S.; Guyot, M.; Potier, P. Tetrahedron Lett. 1993, 34, 2127.
- 11. Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866.
- Vandenberghe, D.; Buysens, K.; Meerpoel, L.; Loosen, P.; Toppet, S.; Hoornaert, G. J. Org. Chem. 1996, 61, 304.
- Loosen, P.; Tutonda, M.; Khorasani, M.; Compernolle, F.; Hoornaert, G. *Tetrahedron* 1991, 47, 9259.
- Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314.
- 15. Ishiyama, T.; Miyaura, N.; Suzuki, A. Synlett 1991, 687.
- 16. Nomoto, Y.; Miyaura, N.; Suzuki, A. Synlett 1992, 727.
- 17. Buysens, K.; Vandenberghe, D.; Toppet, S.; Hoornaert, G. J. Chem. Soc., Perkin Trans. 1 1996, 231.
- Chuyen, N.; Kurata, T.; Fujimaki, M. Agric. Biol. Chem. 1973, 37, 327.
- 19. Littke, A.; Dai, C.; Fu, G. J. Am. Chem. Soc. 2000, 122, 4020.
- 20. Aoyagi, Y.; Fujiwara, T.; Ohta, A. *Heterocycles* **1991**, *32*, 2407.
- 21. Buysens, K. Ph.D Thesis, K. U. Leuven, 1996.
- 22. Ishiyama, T.; Ishida, K.; Miyaura, N. *Tetrahedron* 2001, *57*, 9813.